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An Adaptive Dynamical Model

It is well established that although adult speakers perceive spoken words as having clear boundaries, in reality the signal rarely shows corre-
lates of those boundaries. While adult speakers might exploit a well developed lexicon to parse the speech stream, this is not a viable mecha-
nism for infants who have yet to learn a single word.

Recent focus has been directed at “rhythm” as the relevant mechanism for accessing speech. There is a correlation between languages of
different rhythmic types and strategies their speakers use to segment words and syllables (ex. Cutler, 1997). However, just as the human per-
ception of disereteness in speech is deceiving, so too is our perception of rhythm. Rhythm implies an underlying isochrony which, empiri-
cally, we have failed to reliably find in natural speech.

Evidence seems to be leaning towards the conclusion that the traditional categories are relevant but that the underlying reality behind our
perception of rhythm is something more complex than simple isochrony. Rhythm remains implicated in a wide variety of cognitive funec-
tions, and is a compelling candidate for a linguistic bootstrap into speech segmentation.

My current research attempts to draw a bridge between two areas of rhythm research via a computational model: Ramus et al. (1999)’s
views of what signal correlates underlie rhythm, and the impact of rhythm-class on the segmentation of words from the speech stream
(Cutler, 1997). The primary question that is asked is “Can a simple learning mechanism (an adaptive oscillator model) that responds to
Ramus et al.’s factors—the percent of the signal that is vocalic, the variance in the duration of vocalic intervals, and the variance in the
duration of consonantal intervals—produce behaviour that is consistent with observed differences in segmentation behaviour?"

Preliminary results are reminicent of the patterns Ramus and colleagues have observed and ongoing research is promising. If ultimately
successful, this model would provide support for the hypothesis that these factors underlie human perception of rhythm and would provide a
plausible explanation for why these factors impact on how humans parse the speech signal, a heretofore unaddressed question. It could also
give insight into an open question about the nature of linguistic rhythm: is it categorical or continuous?

There is reasonable evidence that %V, AV, and AC are good candidates for the underlying signal correlates of rhythm and likewise there is
reasonable evidence that rhythm classes are relevant to segmentation. However, it is not immediately clear why there should be a relationship
between %V, AV, and AC and segmentation (let alone some of the other rhythm-class correlated observations like syllable-structure and vowel
reduction).

The present research proposes a three-part, biologically plausible learning ism that attempts to bridge the gap between the underlying
reality and segmentation. Segmentation is conceived as an attentional *window™ around salient points in the speech stream; the size of the
window (correlated with rhythm-class) is driven by the variation in vocalic and consonantal intervals which is tracked by an oscillator
attempting (and generally failing) to find periodicity in the signal.

Acknowledgements: Tracking %V, AV, and AC e S Yol e Comt)

*EN

Two points in the speech signal need to be tracked regularly: o b
vocalic onsets and offsets (which have been shown to be
perceptually salient.

I would like to thank my dissertation committee:
Michael Gasser, Linda Smith, Robert Port, and Ken de
Jong for their mentorship, for sharing the depth of their
knowledge, and for their sage wisdom.

bbb M

I would also like to thank Franck Ramus for making aladdad il

Background:

The Reality and Perception of Rhythm

Rhythm Classes: There is a long tradition of classifying
linguistic rhythm into three types: stress, syllable, and mora-based
(exemplified by English, French, and Japanese respectively). It is
a compelling system as it seems to correspond with the intuitions
of linguists and speakers alike. Moreover, these classes seem to be
perceptually relevant - for instance infants can discriminate
languages of different classes, but not the same class (Mehler et al.

1988).

“Rhythm™ itself, however, is an elusive thing to define. It
implies an underlying isochrony that turns out to be absent, at least
for syllable and stress-timed languages (Bolinger, 1965; Wenk and
Wioland, 1982; Dauer, 1983). Morae on the other hand do seem
quite isochronous (Port et al., 1987). To complicate matters, it
seems that rhythm class is tied up with other linguistic phenomena
like syllable structure complexity and vowel reduction and it isn’t
immediately apparent why there is a relationship between them.
Indeed Dauer (1987) proposes that these characteristics are better
used for typologically classifying languages than “rhythm".
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Rhythm and Segmentation

While native speakers have little difficulty parsing an acoustic
stream into a structure populated with discrete words, it is well
established that there are no reliable signal correlates to word
boundaries. This poses a particular issue for infants who, without
experience or knowledge to rely on, nonetheless find words.

Rhythm has been implicated as a segmentation bootstrap in a
large body of research conducted over the last two decades with
infants and adults alike (Cutler, 1997 is a representative example).
The primary insight that has emerged is that the traditional rhythm
class of a language seems to have reliable impact on how native
speakers segment words and syllables - not only in their own

available the data used by Ramus et al. (1999) which
allows for much more meaningful comparisons.

Signal Correlates and a Different View of Rhythm

Ramus et al. (1999) proposes a set of three signal correlates of
linguistic rhythm that have garnered attention recently:

* %V the proportion of the signal that is vocalic

* AV: the variation in the duration of vocalic intervals

* AC: the variation in the duration of consonantal intervals

The reasoning behind these measures is grounded in the
observation that since naive infants to respond to rhythm
distinctions, the signal correlates must be simple and salient; the
relative difference in energy contributions of vowels and

consonants to the speech signal make the contrast one of the most
fundanmental linguistic distinctions.

language, but when listening to languages of other rhythm classes
as well. The reliability of these results supports “rhythm™ as a
valuable linguistic typological class.

However, again, this presumes isochrony as a fundamental,
underlying tendency - indeed Cutler et al. (1992) aruge that infants
respond to the lowest level of periodicity exhibited in their
language. Given that the lack of isochrony seems as reliable a
finding, it isn’t clear where that leaves rhythm and segmentation.

Figure 1: AV and %V
Ramus et al, {1999, 273). Inhcrem_mgly Polish patterns quite

Figure 2: AC and %V
Ramus ct al. (1999, 273). This projection shows the most

Most importantly, when %V, AV, and AC measurements for a
number of different languages are graphed against each other, the
languages seem to cluster according to their rhythm classification.
(Fig. 1-3). Eight Languages were investigated: English, Dutch,
Polish (“stress-timed™); Catalan, French, [talian, Spanish
(“syllable-timed™); and Japanese (“mora-timed”). Of particular
interest is Fig. 2 where the clustering is most pronounced.

Thus far, these signal correlates are the most reflective of our
expectations.

Figure 3: AC and AV
Ramus ct al. {1999, 274). Again, Polish is exceptional. Itis
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evidence that Palish should be considered a class all its own,

interesting to observe that Japanese has o middling of AV
despite its apparent isocronous morae. This is likely reflec-
tive of Japanese” vowel-length contrast.

Suppose an oscillator were driven by these points. If the intervals
between points were equal, AV and AC would be 0, %V would be
50%, and the oscillator would very quickly entrain on that
periodicity. In a natural speech stream, however, where that
periodicity does not exist, it would not likely entrain. It would
however make predictions about where the next point would fall.

Since the oscillator would be responding to not to one
homogenous interval, but two quite different intervals, its
behaviour would be quite complex. There are multiple ways in
which such an oscillator could be described but perhaps the most
transparent visualization would be as a point tracing a figure-eight.

Encountering a vocalic onset, the trace would leave point A,
traversing the left side of the figure-eight, and predicting the
vocalic offset coinciding with its arrival back at point A. For the
following consonantal period, it would traverse the other half of the
figure. The diameters of each half are proportional to the learned /
predicted duration of each interval - the accuracy of the
coincidence of point A with vocalic onsets and offsets is
correlated with AV and AC. The difference in the diameter of
each circle is proportional to %V.

Figures 4 through 6 exhibit some preliminary results based on
Ramus et al."s (1999) data. Although not a gualitative replica of
Figures 1 through 3, there are enough superficial similarities -
particularly in 2 and 5 - to suggest that as the currently quite rough
learning algorithm is refined, very similar patterns will emerge.

Figure 4: AV and %V
Results from the oscillator mode] using Ramus et al
{1959) dats - of. Fig 1.

Figure 5: AV and %V

{1999) dota - of. Fig 2.

Attentional Window

The bridge to segmentation in the proposed model is
conceived as an “attentional window™ centered on salient
points in the signal. A single point in the speech stream does
not provide sufficient information for recognition - there must
be a “window” that delineates the portion of the signal to be
processed at a given time. Unlike with a Fourier transform or
an HMM, the attentional window in this context is really a
spatial analogy for neural stimulus decay. Neurons respond
lo a transient acoustic event and it takes time for that
excitation to decay - thus the size of the window is related to
how long it takes a neuron to return to its resting activation,

A window can also be thought of as delineating information
that will be chunked together into a single percept. By
definition, portions of the signal outside the window are not
available for consideration in the recognition of what falls
inside the window. In this sense, window boundaries are a
good candidate for segmentation boundaries.

For a perfectly periodic signal, the window size would be
easily defineable - it could equal exactly one consonantal-
voealic period and all information relevant to recognition
would be guaranteed to be present. However, the more
variation in vocalic and consonantal periods observed, the
larger the window would need to be to ensure not losing
important information. Thus, in this model, window size is
taken to be directly proportional to AV and AC.

While this aspect of the model has not been yet developed,
the hypothesis is that the window sizes will correlate with
rhythm type, segmentation behaviour, and by implication
syllable structure complexity and ambisyllabicity.

Results from the oscillator model using Ramus et al.

Figure 6: AV and %V
Results from the oscillator model using Ramus e al
(1999) data - of Fig 3.

Finding Salient Points

In an HMM speech recognition system, a window of fixed
size slides across a signal in realtime measures (ms). Humans
don’t perceive the signal in terms of realtime - they perceive
it in terms of other semi-discrele timing units: segments,
syllables, words, phrases etc. A more likely image would be
of a window bouncing down the signal, being drawn to salient
points in the signal, chunking speech into perceptual units.

The final picce of the proposed model is the “where™; what
are the salient points in the speech stream? It seems likely that
a point near the onset of the vowel - *P-centers” or “beats”
which are implicated in a variety of rhythmic phenomena
(Scott, 1993; Cummins, 1997) are good candidates.

McLennan and Hockema (2002) describe a connectionist
model that provides a biologically plausible method of
implicitly measuring speaking rate from the waveform as it is
being processed. The model, Spike-V, (below) is extremely
simple, consisting of only two nodes. Importantly, it uses
both Hebbian learning and habituation to adjust the weight
of its single connection which was effective at targeting the
centers of vocalic periods. With small adjustments, Spike-V
could be modified to target beats, providing the “where”
aspect required by the model.




