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1. Introduction

Although adult native speakers of a language perceive spoken words

as having clear boundaries and distinct components, the reality is that

the speech signal rarely shows correlates (like pauses or silence) cor-

responding to those boundaries; it is primarily a continuous stream of

modulated frequencies that is not trivially parsed into discrete linguis-

tic units. The inability of scientists to find the physical primitives of

speech despite more than fifty years of concentrated effort is at once a

testament to the sophistication of the human auditory system and also

an indication of our naive understanding of it.

It is perhaps easier to conceive of how adult speakers access the

speech signal, given that they already have a well developed lexicon.

The process could be seen as just a matter of matching the incoming

signal to previously learned acoustic patterns; however, this is simply

not a viable mechanism for infants who have yet to learn a single word.

When could it be more important to be able to parse speech into lin-

guistic units than during acquisition? We must conclude that even if

acoustic pattern-matching plays a role in adult speech comprehension,

it is just too simplistic a story to account for all of speech segmentation.
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Time also proposes a significant problem. Physicists have a firm un-

derstanding of what time is, but it is clear this sense of objective time is

not the “time” that is relevant to understanding biological phenomena.

Even though, as speech researchers, we commonly measure and think

in milliseconds, it may be that on a cognitive level, absolute time is

less relevant than “linguistic time”, although as we shall see, this too

is something we do not have a firm understanding of.

Particularly for the task of segmenting speech, in the last couple of

decades, significant focus has been directed at “rhythm” as the rele-

vant measure of time mechanism for accessing speech. There seems

to be a correlation between languages of different rhythmic types and

strategies their speakers use to segment words and syllables. However,

just as the human perception of discreteness in speech is deceiving,

so too is our perception of rhythm. Historically, the underlying as-

sumption has been that isochrony underlies rhythm—that the relevant

rhythmic unit (syllable or stress, for instance) recurs at near regular

intervals in speech. However, empirically, we have failed to find reliably

isochronous intervals in natural speech that correspond to the accepted

rhythm categories and we are forced to question the fundamental va-

lidity of those categories.

Evidence seems to be leaning towards the conclusion that the tradi-

tional categories are relevant and that the underlying reality behind

our perception of rhythm is something more complex than simply

isochrony. Rhythm remains implicated in a wide variety of cognitive

functions, and is a compelling candidate for a linguistic bootstrap into
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speech segmentation. What follows in sections 2 through 4 is a re-

view of the research in linguistic rhythm, its impact segmentation, and

how we might get a handle on what the nature of linguistic rhythm

is. In section 5 I will propose a simple mechanism by which differ-

ent rhythmic segmentation strategies may emerge based on experience

with linguistic input.

2. Linguistic “Rhythm”

There is a long tradition of classifying languages according to human

perception of their prosodic structure. James (1940), as an early exam-

ple, refers to languages like Spanish and Italian as having a “machine-

gun” rhythm. Pike (1945) later attributed the difference in the sub-

jective rhythm of languages like English and Dutch from languages

like Spanish and Italian as being “stress-timed” and “syllable-timed”

respectively. A third category—“mora-timed”—to describe languages

like Japanese in which timing seems based on a sub-syllabic unit (Aber-

crombie, 1967; Port et al., 1996) rounds out what has become the stan-

dard set of possible linguistic rhythm types.

This tri-partite classification is compelling; it seems to correspond

with linguists’ and speakers’ intuitions about prosody. On the most su-

perficial level, consider the native poetry types of English, French, and

Japanese (the canonical representatives of each rhythm type). Japan-

ese haiku and tanka have strict constraints not on the number of sylla-

bles in each line, but rather mora, which are assigned to not only light

CV syllables, but also to geminate consonants, long vowels, and coda
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nasals. Sonnets however, a historically French style, are strict with re-

spect to the number of syllables. Lastly, English limericks are flexible

with respect to syllables, as long as the characteristic stress pattern is

obeyed. Although it is certainly true that English speakers can write

haiku and Japanese speakers can write sonnets, there is an intuitive

appropriateness to each style and its native language. So, while styles

of verse cannot provide us with strong evidence of rhythm-types, it

nonetheless reinforces the prevailing conception of how these languages

differ.

What is meant by the term “rhythm” is somewhat more vague.

The underlying presumption behind terms like “stress”, “syllable”, and

“mora timing” is isochrony (Abercrombie, 1967); that is that the re-

spective units in each language occur at roughly equal intervals, giv-

ing rise to a sense of periodicity. Empirically, however, this has been

shown to be a gross oversimplification. For instance, in English inter-

stress intervals are correlated with the number of intervening syllables,

as well as their internal structure (Bolinger, 1965). This variability

defies any claims of isochronous stresses in English. Wenk and Wiol-

land (1982) failed to find isochronous syllables in French and Dauer

(1983), comparing English, Thai, Spanish, Italian, and Greek, did not

find that English interstress intervals were any more isochronous than

the other (syllable-timed) languages. Japanese morae on the other

hand are much closer to being isochronous; it appears that each mora

contributes a near equal duration to the utterance (Port et al., 1987).

“Rhythm”, like many other perceived phonetic properties, is proving
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to be difficult to define given the continuous and highly variable nature

of articulation.

To complicate matters further, rhythm appears tied up with other

language specific characteristics like syllable structure complexity and

vowel reduction. That is, stress-timed languages tend to permit more

complex syllable structures (particularly in stressed position) and in

unstressed positions, vowels tend to be shortened and their quality

shifted towards schwa. Syllable-timed languages tend to be more con-

strained, and mora-timed languages tend to be the most constrained

(Dauer, 1983). Why this relationship should exist between the per-

ception of time and structure is not immediately apparent, but it is

identifiable. Indeed, Dauer (1987) proposes using characteristics like

these as a more objective and meaningful method of typologically clas-

sifying rhythm types than the the standard “stress”, “syllable”, and

“mora”.

One advantage to Dauer’s proposal is that it presents a more prac-

tical solution for dealing with ambiguous languages. Catalan, which

has syllable structure and complexity like Spanish and which we would

expect to be syllable-timed, also unexpectedly shows vowel reduction.

Polish presents the opposite conundrum; the complexity of its sylla-

ble structure is typical of stress-timing, but it does not exhibit vowel

reduction. Unsurprisingly, there is disagreement amongst linguists on

how these two languages should be classified (Ramus et al., 1999).

Clearly what we call “rhythm” touches on an underlying reality for

the impact of rhythmic-type is empirically well-founded. Even infants

can distinguish between languages of different rhythm types (but not
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the same) when utterances have been low-passed filtered, thereby re-

taining only prosodic information (Mehler et al., 1988). Metrical struc-

ture that is absent from natural speech immediately appears in simple

repetition tasks (Cummins and Port, 1998), and speakers of languages

belonging to different rhythm types show differences in their behavior

on such tasks (Tajima and Port, 2003). Thus the question becomes

what is the foundation of linguistic rhythm, if it is not what we would

expect from the definition of the word “rhythm”? Franck Ramus and

his colleagues have some compelling answers to that question which are

the subject of the following section.

3. Potential Signal Correlates of Linguistic Rhythm

A number of different typologies, measures, and systems have been

proposed to compensate for the apparent lack of isochrony (ex. Lehiste,

1977; Dauer, 1987; Cummins and Port, 1998; Cummins, 2002). Ramus

et al. (1999) proposes a set of three signal correlates of linguistic rhythm

that has garnered attention recently.

Very little experience is required for infants to be able to distinguish

between languages of different rhythm types, long before the emergence

of their own phonologies (Mehler et al., 1988). Thus it stands to reason

rhythm is grounded in distinctions that infants are sensitive to. There

is evidence that infants can identify vocalic periods in speech (Mehler

et al., 1996) at the outset of acquisition, and it may even be that vowels

and consonants are separably processed by the brain (Caramazza et al.,

2000). Intuitively this makes sense: the distinction between vowels,

which account for most of the energy in the signal, and consonants,



7

which contribute little to no energy, is the most salient perceptual

distinction in oral language.

Ramus et al. (1999) consequently assume only this very rudimen-

tary parsing of the signal and measured the durations of vocalic and

consonantal intervals.1 These were the basis for three simple statistics:

• %V: the proportion of the total duration of the signal that is

vocalic.

• ∆V: the variation in the duration of vocalic intervals.

• ∆C: the variation in the duration of consonantal intervals.

Note that a perfectly isochronous signal would have a %V of 50%,

and a ∆V and ∆C of 0. This would mean that the durations of vocalic

and consonantal intervals are perfectly predictable, equal to each other,

and occur at integer multiples. Thus, %V, ∆C, and ∆V can also be

regarded as a rough measure of how strictly metrical the language is,

at least with respect to these intervals.

These measures were taken on samples from 8 languages—Dutch,

English, Polish (considered stress-timed); Catalan, French, Italian,

Spanish (considered syllable-timed); and Japanese (considered mora-

timed)—and plotted on three two-dimensional projections of the three-

dimensional space defined by the factors. These plots appear in Figures

(1) through (3).

Figure (1) is of primary interest. The distribution of languages on

this plane maps well to the traditional stress-syllable-mora categories.

Figures (2) and (3) show a similar clustering of languages, but Figure

1In measuring vocalic intervals, no distinction is made between consecutive vowels

or long vowels, and off-glides (but not on-glides) are included.
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Figure 1. Distribution of languages over the (∆C, %V)

plane. Error bars represent ±1 standard error. (Ramus

et al., 1999, pg. 273)

(1) shows a statistically significant effect of rhythm type whereas the

others do not.

There are two important observations to make of (2) and (3), how-

ever. The first is that Polish is isolated from the other presumed stress-

timed languages; this at once provides an explanation of the ambiguity

concerning Polish’s status in the literature, and suggests that Polish

be treated as a separate category entirely. Indeed, further perceptual

experimentation has shown that Polish is in fact distinguishable from

English and Dutch (Ramus et al., 2003). This result further suggests

that there may yet be other categories evidenced as more languages

are examined with regard to these measures. The preponderance of
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Figure 2. Distribution of languages over the (∆V, ∆C)

plane. Error bars represent ±1 standard error. (Ramus

et al., 1999, pg. 274)

the traditional three categories might then be due to markedness con-

straints as is similarly suggested by Levelt and van de Vijver (1998),

or simply to an investigatory selection bias.

The second important observation is that although Japanese has a

middling measure of ∆V, the error is relatively low—indeed the lowest

of any of the languages. Ramus et al. (1999) did not provide the distri-

butions of vocalic durations, but we can infer that the high variation

and low standard deviation was probably caused by a bimodal distri-

bution with values tightly clustered around two peaks, one of which is

substantially higher than the other. This of course would reflect the

fact that, in Japanese, vowel length is contrastive and that long vowels,
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Figure 3. Distribution of languages over the (%V, ∆V)

plane. Error bars represent ±1 standard error. (Ramus

et al., 1999, pg. 273)

having two associated morae, are nearly exactly twice the length of a

short vowel. This will be relevant to predictions of the model proposed

here in section 5 below.

Ramus et al.’s result is compelling in the simplicity of the measure-

ments, their grounding in the cognitive and linguistic development of

infants, and in their ability to characterize the long standing catego-

rization system that has proven itself relevant. It does leave open a

number of important questions and %V, ∆C, and ∆V’s suitability and

reliability in characterizing cross-linguist rhythm type is the subject

of ongoing debate (Ling et al., 2000; Barbosa, 2002; Cummins, 2002;

Galves et al., 2002; Grabe and Low, 2002). One important question
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is the interaction of speech rate, which although controlled for, is not

varied in Ramus et al.’s study. Another is whether rhythm type is cat-

egorical or continuous in nature. As more and more diverse languages

are analyzed according to these criteria, will they continue to cluster

according to type, or will we find a continuous spread? Is the clustering

seen in the present study simply the result of the selection of languages

that prototypically represent their presupposed classes? Both of these

questions are relevant to the research proposal outlined here.

At this point, we will momentarily set aside Ramus et al.’s measures

and consider a quite different literature on the relationship of rhythm

to speech-stream segmentation. A bridge between these two related

areas is an aspect of this proposal that is addressed below in section 5.

4. Rhythm and Segmentation

Native speakers of a language effortlessly perceive the existence of

discrete words in the speech stream, even perceive gaps between them,

much like the spaces between printed words. In fact, such boundaries

are largely absent from the signal. This poses the problem of how words

are segmented from the speech stream.

A number of prominent recognition and lexical competition models

have been proposed (McClelland and Elman, 1986; Norris, 1994; Luce

and Pisoni, 1998) but these all rely on an existing lexicon for correct

segmentation and recognition to occur. This provides little or no insight

into how prelinguistic infants manage to perform initial segmentation.

Although there may be some characteristic differences in the child-

directed speech, its fundamental continuous nature is unaltered. It
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may be that linguistic rhythm is the bootstrap that gives infants their

first cues to segmentation (Cutler et al., 1992; Cutler and Mehler, 1993;

Cutler, 1994).

Cutler and Carter (1987) observed that strong syllables (syllables

containing a full vowel) in English provide a reliable segmentation cue;

words in English are three times as likely to begin with a strong syllable

as a weak syllable and words that begin with strong syllables occur with

a higher frequency. Together, these facts estimate that about 85% of

the word boundaries of lexical categories in English speech precede a

strong syllable. Since strong syllables are related to prominence and

greater perceptual salience, it stands to reason infants may use them

as an initial heuristic. Similarly Mehler et al. (1981) found a potential

“syllable effect” in French speakers.

These observations have led to more than two decades of research into

the relationship between rhythm and segmentation cross-linguistically

and there is good evidence that speakers of different languages seg-

ment speech using different criteria, and moreover that those crite-

ria are grounded in the traditional “stress-timed”, “syllable-time”, or

“mora-timed” classification system. (Cutler (1997) provides a general

overview of the techniques and results.)

Experimentation has been centered on English, French, and Japanese—

obviously because of their status as the “prototypical representatives”

of their respective rhythm classes—and has used variations of a word-

spotting task (McQueen, 1996) as the primary method of investigation.

The task involves asking subjects to attend to a target word or sylla-

ble, and respond if and when they hear that target embedded within
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longer words. Response times are measured, and the speed of response

is taken to correlate with the relative ease of segmentation; that is,

subjects respond slower if the target crosses expected segmentation

boundaries.

The study by Mehler et al. (1981) and replicated in Cutler et al.

(1986) that found a syllable effect in French, showed that French speak-

ers will find a CV syllable faster in a CVCV- word than a CVCCV-

word and a CVC syllable faster in CVCCV- word than a CVCV- word.

For instance, if the target is bal, it is more readily spotted in balcon

than balance. Conversely, if the target is ba it will be found faster in

balance; subjects are significantly faster and finding targets that match

the syllable structure of the stimuli.

This crossover effect in response times is completely absent in English

speakers. Cutler et al. (1986) extended Mehler et al. (1981)’s finding

by looking at both English and French speakers using both French and

English targets and stimuli. Regardless of whether French speakers

were listening to English or French, the effect appeared and regardless

of whether English speakers were listening to English, French, or non-

sense words, the effect was absent. English speakers show no preference

for syllable structure in spotting target syllables.

Using an analogous task, however, Cutler and Norris (1988) showed

that English speakers show a “stress-effect”. Subjects can find the

word mint faster in the nonsense word mintef than in mintayf. It is

argued this is because the second strong syllable in mintayf induces a

word segmentation boundary between [n] and [t] and finding mint thus

requires reassembling information that has been already divided. They
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are equally fast at finding thin in thintayf and thintef, a comparable

task in which the target does not straddle the supposed boundary.

Cutler and Butterfield (1992) provided further evidence for the effect

by experimentally inducing missegmentations.

Naturally, given these results, we would expect to find an analogous

“mora-effect” in Japanese and Otake et al. (1993) and McQueen et al.

(2001) showed exactly that. Japanese speakers can find targets better

when they correspond to mora boundaries than when they cross mora

boundaries. Thus subjects can find the target uni in gyan’uni and

gyaouni but completely fail to find it in gyabuni. Moreover, English

and French speakers listening to the Japanese utterances perform ap-

propriate to the previous results: French speakers show a characteristic

crossover effect with respect to syllable structure that is absent from

English speakers.

The results from English, French, and Japanese are convincing; they

provide positive evidence in the debate over the relevance of the tradi-

tional rhythm classes. More detailed analyses of other languages needs

to be performed before any conclusions are drawn, however; initial in-

vestigations are not as clear cut (Cutler, 1997) and it could be that the

selection of these prototypical languages has overextended the general-

izability of the results.

It is also clear that Cutler and her colleagues presume isochrony as

the underlying tendency of rhythm, and indeed in Cutler et al. (1992)

it is argued that infants respond to the lowest level of periodicity exhib-

ited in their language. Given that this appears to be incorrect, where

does that leave their findings? If Ramus et al. (1999)’s %V, ∆V, and
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∆C measurements are presumed to be the reality behind rhythm, how

and why should variation in consonantal and vocalic intervals have the

exhibited effect on segmentation? The line of research proposed here

explores a hypothesis of how Ramus et al. and Cutler et al.’s findings

interface.

5. Proposed Line of Research

The primary question this proposal addresses is “Can a naive adap-

tive dynamical model responding only to %V, ∆C, and ∆V produce

behavior indicative of different rhythmic segmentation strategies?” If

such a model is successful, it would provide support for Ramus et al’s

measures by providing an important bridge to Cutler et al’s experi-

mental results and it would also a powerful tool for exploring further

experimental predictions.

In a Hidden Markov Model (HMM) speech recognition system, a

window of fixed sized slides across a signal sampled in realtime mea-

sures (i.e. milliseconds) and it tries to match the input with statistical

probabilities already learned. It seems unlikely that human speech

perception occurs in this fashion. Humans don’t perceive the signal in

terms of milliseconds—they perceive it in terms of phrases, words, and

segments that have an identity independent of the underlying realtime

variations in their duration. Moreover, not all segments are created

equal—vowels provide most of the energy in the signal and carry the

most information. A more likely image than the HMM sliding window

would be of a window bouncing down the signal not in fixed intervals

measured in realtime, but being drawn to salient points in the signal,
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effectively chunking speech into perceptual units and adapting appro-

priately. A system that progressed in this fashion would need to have

two primary pieces of information: where those salient points are and

how much of the signal the window should encompass. The “where”

and “how much” of this proposed system are discussed below; it is

however the “how much” that is most relevant to the question of how

%V, ∆C, and ∆V might impact on segmentation.

5.1. Where. McLennan and Hockema (2002) describes a connection-

ist model that provides a biologically plausible method of implicitly

measuring speaking rate from the waveform as it is being processed.

The model itself is extremely simple, containing only two nodes, and is

intended to be implemented in conjunction with another, more fully

developed speech recognition system (the paper suggests the ART-

PHONE model (Grossberg et al., 1997)). The output of the model

is a spike train that marks roughly the centers of highly sonorant peri-

ods of the speech stream—i.e. the vowels. Sonorance is gauged using

the intensity of the signal within the frequency band corresponding to

the average human fundamental frequency (F0).

The most crucial aspect of the model is the dynamically changing

weight from the input node to the output node. The adjusting of an

input weight would usually be called “learning” in most neural network

models, however in this case it is happening on a much shorter time-

scale, so it is referred to as “adaptation” in order to distinguish it

from more permanent learning. This adaptation is the result of both

Hebbian learning (Hebb, 1949) and habituation (Wang, 1995) employed

simultaneously to adapt the same weight.
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When the input activation (intensity of F0) is below a certain thresh-

old (θ), the weight between the nodes is increased during periods of

high intensity. However, once the activation of the neuron exceeds the

threshold, it begins to habituate and the weight is gradually decreased.

Thus, a key to the model is the balance struck between the increasing

and decreasing portions of the weight dynamics during a period of sus-

tained high intensity. At the end of such a burst, the net change in the

weight will be a decrease if the burst was longer than expected and an

increase if the burst was shorter than expected.

The dynamics here interact with the dynamics of another state vari-

able, A(t), the activation level. Thus, as the weight increases, this will

cause the rate of change in the activation to increase. An increase in

the neuron’s activation will subsequently cause the rate of the weight

adaptation to change (depending on if the neuron is above or below

the θ threshold). Overall, this “snowballing” effect is useful in dealing

with rapid changes in the speaking rate in real-time, and there is a

normalizing effect on the output spike train. That is, the output spike

trains for the same utterance spoken at different rates are very similar.

The dynamics are governed by the following equation:

(1)
dW

dt
= α ∗ (θ − A(t)) ∗ IF0 (t)

where α is a learning rate parameter.

An interesting fact about the dynamics of this system is that if a

vocalic period is encountered that is significantly longer than what

is expected—that is significantly longer than the learned average—two

spikes will be produced during the same vocalic period. This fact could



18

be very important for a language like Japanese that distinguishes be-

tween long and short vowels. As noted above in section 3, the distribu-

tion of Japanese vocalic intervals is likely strongly bimodal and favors

short vowels—precisely the scenario that would give rise to multiple

spikes.

The focus of Spike-V was employing habituation to provide a biolog-

ically plausible measure of speaking rate and consequently not much

consideration was given to the exact point in the sonorous period that

should be targeted and the center was arbitrarily chosen. It seems very

likely however, that a point near the onset of the vowel—“P-centers” or

“beats”—is more relevant for rhythmic tasks (Scott, 1993; Cummins,

1997). With small adjustments, Spike-V could probably be adapted to

produce spikes close to these points, providing the “where” information

required by this view of speech recognition

5.2. How much.

5.2.1. The Window. For recognition to occur, a single point does not

provide sufficient information; some amount of prior and subsequent in-

formation from the signal needs to be integrated together. Hence, there

must be a receptive “window” that delineates the portion of the signal

being processed at that point in time. In this context, we usually think

of “windowing” in terms of a segment of a waveform or spectrogram

in which temporal information is available simultaneously. Really, the

window is a spatial analogy for neural stimulus decay. Neurons respond

to a transient acoustic event and it takes time for that excitation to



19

decay. Thus the size of the window is related to how long it takes a

neuron to return to its resting activation.

A window can also be thought of as delineating information that

will be chunked together into a single percept. By definition, portions

of the signal outside the window are not available for consideration in

the recognition of what falls inside the window2. In this sense, window

boundaries are a good candidate for segmentation boundaries.

Consider the idealized signal in Figure (4). It is a simple graph of

intensity and time where high intensity corresponds to a vocalic period

and low intensity to a consonantal period. Thus, the graph represents

a simple CVCV alternation in which each consonant and each vowel

are identical in length—it is a perfectly periodic signal where %V is

50%, and ∆C and ∆V are 0. Because it is perfectly periodic, we know

the exact size of a receptive window (the arcs above the signal) that

would be required to minimally cover the entire signal.

However, consider Figure (5) which represents a CVCCVCV struc-

ture that has a %V that is less than 50%, a ∆V of 0, and a non-zero

∆C. Clearly the same fixed, narrow window will be inappropriate for

recognition in this case as it will skip over important information about

consonant clusters. We can state generally that the less periodic the

signal, the wider the receptive window must be in order to ensure suf-

ficient coverage. The more periodic the signal, the more one can afford

to have a tight, fixed window size.

2Acknowledging of course that context and expectation can have a long-distance,

top-down impact.
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0

F0
intensity

Figure 4. An intensity / time representation of an ide-

alized signal. Absence of intensity corresponds to a con-

sonantal period, presence of intensity corresponds to a

vocalic period. The small dots represent a “where” spike

as discussed in 5.1 above. The arcs above the graph rep-

resent the window.

0

F0
intensity

Figure 5. An intensity / time representation of a less

than periodic signal.

The hypothesis that windows are related to segmentation boundaries

and that window size is related to the relative periodicity of events in

the speech signal (of which %V, ∆V, and ∆C are an estimate) suggests

a mechanism by which rhythm class can impact on segmentation. It

would be useful at this point to summarize a few observations about

English, French, and Japanese (cf. Table 1).

The observations in Table 1 are consistent with the hypothesis that

English speech recognition uses a relatively wide receptive window,

Japanese a relatively narrow receptive window, and French, something

in between. A wide window would be capable of encompassing more
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English French Japanese

Segmentation stress syllable mora

Time Scale supersyllabic syllabic subsyllabic

Periodicity low low high

%V ∆V ∆C low, high, high mid, mid, mid high, mid, low

Syllable Types many intermediate few

Table 1

sequential segments, allowing for more complex syllable structures, but

would likewise often include segments belonging to more that one sylla-

ble when those syllables happen to be simple3. A narrow window would

severely constrain the complexity of syllable structure, and would be

consistent with subsyllabic timing.

This is not to suggest necessarily that there is a causal relationship

between the observations in Table 1, or perhaps more accurately, a

direction of causality. If it is true that window-size is related segmen-

tation strategies and syllable complexity, surely it is a bidirectional re-

lationship and they are as intimately tied to each other as the chicken

and the egg.

5.2.2. Modelling the Window. In Figures (4) and (5), there are funda-

mentally two acoustic events that provide temporal information: the

onset of the vocalic interval and the offset of the vocalic interval. These

two events are sufficient to determine %V, ∆V, and ∆C.

3This suggests that syllable boundaries may not always be clear, unintuitively,

particularly when the syllable structure is simple; this is true in English
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Suppose an adaptive oscillator (McAuley, 1995) was being driven by

the onsets and offsets in Figure (4). It would very quickly entrain on a

period equal to the consonantal / vocalic interval. If the oscillator were

being driven by a more natural, less periodic signal, it’s behavior would

be more erratic. As it tried to adapt, expecting to find regularity, its

period would fluctuate and generally it would fail to match events. If

we think of the period as a prediction of where the next event will

occur, we can think of the accuracy of that prediction as an estimate

of how variable the interval is.

The picture is somewhat complicated by the fact that what needs to

be estimated is not a single homogenous interval, but a single interval—

suppose vowel onset to vowel onset—composed of two distinct subin-

tervals: vowel onset to vowel offset and vowel offset to vowel onset. It

is the error of those subintervals that needs to be gauged rather than

the entire interval. While ∆V and ∆C seem somewhat correlated in

Figure (2), Polish is an example where vowel intervals are considerably

more predictable than consonantal intervals. Thus, ∆C, and ∆V do

need to be estimated independently of each other.

This can be accomplished with a complex oscillator. Such an oscil-

lator could be described in a number of different ways, but perhaps the

most transparent visualization of it would be a point tracing a com-

plex closed path such as the figure-eight in Figure (6). The diameter

of each circle is related to the period of that subinterval; the sum is the

period of the entire onset-to-onset cycle. Each diameter (period) can

be adapted independently with the goal of each event, onset or offset,
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coinciding with the trace at point A. The prediction accuracy of each

period provides independent estimates of ∆C and ∆V.

Voc. Cons.A

Figure 6. Visualization of the oscillator predicting

vowel onset and offsets as a point following a figure-eight

shaped path. Events are predicted to occur at point A.

The final measure, %V, is related to the difference in the diameter

of the two circular paths in Figure (6). As the oscillator adapts over

time, the diameter represents a learned estimate of the interval duration

based on the intervals it has already encountered. Thus, the closer the

two diameters are to being equal, the closer %V will be to 50%.

%V, ∆C, and ∆V can all be estimated from this one mechanism that

adapts to the signal continuously as it is received. The estimates then

can be used to adapt the size of the receptive window to a size appropri-

ate to the language, and presumably, related to where language-specific

segmentation boundaries occur.

6. Conclusion

6.1. Time line. I see this research project progressing on the following

time line:

• Adapting Spike-V and assessment of performance: 2 months

• Development of the oscillator model: 1 month
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• Replication of Ramus et al. (1999): 1 months4

• Assessment of performance on natural speech (consistent with

above?): 2 months

• Assessment of potential segmentation based on window-size

(consistent with Cutler et al.?): 2 months

• Exploration of unanticipated considerations; writing: 4 months.

6.2. Discussion of Potential Results. If this model is successful

at producing behavior consistent with segmentation based on rhythm

class, it will provide an important test of Ramus et al.’s hypothesis

that rhythm class finds its perceptual basis in the three measures, %V,

∆V, and ∆C. However, the structure of the model, which distinguishes

between “where” (the salient points in the signal relevant for rhythmic

tasks) and “how much” (window size, hypothesized to be relevant for

segmentation) also suggests that the concept of “rhythm” should be

decomposed into quite distinct entities.

The model might also weigh in on the question of whether languages

do cluster together into rhythm classes, or whether in reality they fall

along a spectrum. Being a dynamical model, it is possible that attrac-

tor states may be apparent that correspond to rhythm classes. Also,

because it is an automatic, computational model, it would facilitate

the assessment of a wider diversity of languages.

Thus far, neither research into %V, ∆V, and ∆C, nor rhythmic seg-

mentation has addressed the role of speaking rate which undoubtedly

will impact on both. Because the model is rate-independent, it could

4Permission to use Ramus et al.’s corpus of recordings has been requested; pending

response.
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be used as a tool to explore differences in rate. Also, it suggests some

interesting directions for such research; by necessity, as speaking rate

increases, ∆C and ∆V will drop, narrowing the window-size. Thus it

may be possible to manipulate segmentation experimentally by manip-

ulating speaking rate based on predictions from the model. Moreover,

highly rhythmic speech (poetry read aloud, speech cycling tasks, etc.)

are more predictable by definition; it may be that there would simi-

larly be observable differences in segmentations, particularly if syllable

structure is tightly controlled to reduce variation in consonantal and

vocalic periods.
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